The Driller
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • CLASSIFIEDS
  • EQUIPMENT
  • SAFETY
  • VIDEOS
  • EDUCATION
  • SOURCEBOOK
  • EVENTS
  • SUBMIT
  • ABOUT
  • SIGN UP
cart
facebook twitter linkedin youtube
  • NEWS
  • Water
  • Geothermal
  • Construction
  • Environmental
  • Mining
  • All Industry News
  • EQUIPMENT
  • Rigs & Heavy Equipment
  • Consumables
  • Pumps
  • Featured Products
  • VIDEOS
  • Newscast
  • Drill Talks
  • Ask Brock
  • Emerging Drillers
  • EDUCATION
  • Drilling Business Insights
  • Reference Desk
  • Sponsored Insights
  • EVENTS
  • Conferences & Demo Days
  • Newscast LIVE
  • SUBMIT
  • Drillers @Work
  • ABOUT
  • Contact
  • Advertise
The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP
Industrial DrillingOil & Gas DrillingGeothermal

Oil and Gas Wells Prove Useful for Geothermal Energy Generation

By Valerie King
oil wells producing geothermal power

Two wells, primarily used for water-flood oil production, are being used secondarily to produce geothermal power. Source: Will Gosnold photos

co-producing electricity from geothermal resources

The nation’s first-ever commercial enterprise to co-produce electricity from geothermal resources at an oil and gas well has been successfully launched.

geothermal systems

Karl Gawell says increased adoption of co-producing geothermal systems could help create more work for drillers.

GEA Technological Advancement Award

Will Gosnold, left, of the University of North Dakota and Tim Reinhardt from the DOE accept the 2016 GEA Technological Advancement Award for the research project from Karl Gawell. Source: Geothermal Energy Association

oil wells producing geothermal power
co-producing electricity from geothermal resources
geothermal systems
GEA Technological Advancement Award
October 1, 2016

Hot fluid is a byproduct of many oil and gas wells across the country. At least 25 billion barrels of it are produced each year, according the U.S. Department of Energy (DOE). The hot water has proved burdensome for many oil and gas producers historically, especially with respect to disposal. But research has demonstrated that the fluid itself is capable of producing energy, and it can actually help cut costs for energy producers instead of raising them.

Researchers at the University of North Dakota (UND), with support from the DOE Geothermal Technologies Office (GTO), helped launch the nation’s first commercial enterprise to co-produce electricity from geothermal resources at an oil and gas well earlier this year. UND researchers successfully bred geothermal power from hot water that flows naturally from petroleum wells in the Williston Sedimentary Basin in western North Dakota. The facility started generating electricity for the first time in April.


“If we can capture that energy, it’s almost like free and clean energy, off of an oil and gas production.”


“It’s a definite breakthrough,” says Karl Gawell, executive director of the Geothermal Energy Association (GEA). “People have talked about the potential for years, knowing that there’s hot water in oil wells. Nobody had really put a permanent system in place. … So this is, to me, a really momentous time.”

The research project received the 2016 GEA Technological Advancement award in June and Gawell says it ties in closely with the association’s mission to expand the use of geothermal resources. He says there is an abundance of megawatts of power available from oil and gas wells in the U.S.

“So we’re literally wasting it right now because most of these wells are pumping up hot water,” he says. “What are they doing with it? They’re reinjecting it and not using the heat. So if we can capture that energy, it’s almost like free and clean energy, off of an oil and gas production. I think it’s one more way to get the job done in terms of changing our energy system.”

Cutting Costs

Will Gosnold, professor of geophysics at UND and principal investigator of the research projects, says he has always been interested in this kind of thing. Starting in the late 1970s, he was involved in research that aimed to estimate the amount of thermal energy stored in relatively shallow areas geothermally speaking, not much deeper than three or four kilometers. He found that there is a lot of heat there, but realized it could not do much good without being brought up in some useful form.

“Then along came the idea of producing the fluids from the oil fields. This was others in, I think, about 2005 when it started coming out in the literature,” Gosnold says. “I saw that and got pretty excited about it because I realized that at that time, we could have a use for all of that energy that is there. It’s now coming to fruition; 10 years later, but these things do take time.”

He says his team received the DOE grant in 2009 and they immediately started developing the system. He expected to be done by 2012. Largely because of the oil boom in North Dakota, he says the price of oilfield operations in construction skyrocketed, so a lot of the time was spent raising additional funds.

“I think potentially it’s huge because we could supply an enormous amount of power from the oil fields,” Gosnold says. “I’ve already been contacted by several geothermal developers who want to come in and try to do this themselves as a business.”

He points out that while the oil industry is generally focused solely on pumping oil and gas, and selling it, the drop in oil prices makes the major cost of electricity especially heavy. With the opportunity to generate geothermal energy from existing wells of their own, there is potential for oil and gas producers to power their entire operations at virtually no cost.

Gosnold says this also opens the door to distributed power systems that are immune from the power grid and are not affected if the grid goes down. Should the oil field play out, he says, the geothermal power can be fed into the existing power grid and the power company, the new recipient, can sell it.

Unconventional Resource

The two horizontal wells involved in the research project are about 8,000 feet deep, Gosnold says. Owned and operated by Continental Resources, they were initially drilled for oil and gas production purposes. He explains that pressure in the oil field tends to drop over time, meaning oil does not flow to production wells as it did when production began. The two wells, which together have a flow volume of about 875 gallons per minute, address the slowdown by injecting water into the oil-producing formation, toward the oil production well, and pressurizing it.

One of the challenges Continental Resources was running into, and one reason they were interested in being a part of the research project, is the high temperature of the water, Gosnold says. It created safety hazards around their site and was tough on the injection equipment as well. The company was cooling the water through two large cooling towers, which used a lot of electricity.

Now the water is still primarily used for water-flood oil production, but also secondarily to produce geothermal power. It goes through organic Rankine cycle engines (ORC) prior to going through the cooling tower. So heat is simply being taken from the water as it passes through the system, then the water is sent back to the injection system. The fact that the heat is being taken from the water not only makes the process safer and easier to handle; it also means that instead of using electricity to cool the water down, electricity is being generated by cooling the water down.

Essentially, the technology offsets the need for costly transmission construction and reduces energy costs at remote oil fields. According to the DOE, co-produced geothermal resources like these have the potential to produce significant amounts of baseload electricity at low costs and with near zero emissions.

That said, these energy sources aren’t as deep and hot as traditional geothermal resources. Often referred to as low-temperature, the co-produced resources represent a small but growing sector of hydrothermal development in geothermal resources below 300 degrees Fahrenheit, according to the DOE. They are considered non-conventional hydrothermal resources. Gosnold says these particular wells supply water around 212 degrees Fahrenheit.

Positive Potential

In addition to electrical energy, co-producing geothermal systems could help power up drilling job prospects. In cases like this one, wells may need to be further developed. That could mean drilling deeper — vertically, horizontally or both — or widening hole size. A geothermal production well is typically two or three times larger than an oil or gas well because higher fluid volumes are necessary.

Drilling expertise could also come in handy to repurpose actual oil or gas production wells when they play out and it is no longer economical to use them. Gosnold points out that larger pumps could be installed to pump the wells at much faster rates and produce high volumes of water. What’s more, entirely new wells may need to be drilled altogether.

“In many of these cases, they’re going to have to look at the sedimentary basins where they’re getting this type of oil and gas recovery and realize they might be able to get additional recovery from drilling additional wells,” Gawell says.

He says that geothermal continues to grow in the U.S. and around the world, but that we are still at the front end of the process.

“Today we’re producing in about 28 countries and we’ve got about another 15 or 20 under development. So you’re seeing things move in the right direction. But I think we have to get beyond the slow pace I think we’re facing today,” he says. “It’s a question of human knowledge and ability. I’ve always thought that when the challenges require us to learn how to use our brains and our ingenuity to do things better, we can win those battles.”

KEYWORDS: geothermal drilling geothermal energy well drilling

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Valerie king 200px

Valerie King was managing editor of The Driller.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • geotechnical drilling rig

    6 Onsite Phrases Environmental Drillers Hate

    Here are six phrases that highlight common frustrations...
    Geotechnical Investigation
    By: Jeff Garby
  • Wayne Nash

    Pipe Stuck? Common Causes and Solutions for Drillers

    If you have drilled for any length of time, sooner or...
    World According to Wayne
    By: Wayne Nash
  • submersible pumps, water well pumps

    Selecting and Sizing Submersible Pump Cable

    This article helps pump installers and servicers decide...
    Equipment
    By: Bob Pelikan
You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the The Driller audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of The Driller or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • demo of a DM450 drilling rig during a customer factory visit
    Sponsored byGeoprobe

    Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

Popular Stories

MainPhotoTwoBrothers.jpg

Two Brothers' Journey Through the Drilling Industry

AI and Drought Concerns

AI’s Growing Thirst for Water and Power

demo of a DM450 drilling rig during a customer factory visit

Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

The Driller Classifieds

COMPRESSORS

EAST WEST MACHINERY & DRILLING IS BUYING AND SELLING AIR COMPRESSORS, AIR BOOSTERS, AIR ENDS & PARTS
Company: East West Machinery

DRILL RIGS

LOOKING FOR LATE MODEL TOPHEADS & DRILLTECH D25'S
Company: Spikes’s Rig Sales

DRILL RIG PARTS

MEETING DRILLERS NEEDS AROUND THE WORLD
Company: East West Machinery

ELEVATORS

SEMCO INC. PIPE ELEVATORS
Company: Semco Inc.

GROUTERS

GROUTING EQUIPMENT - GROUT PUMPS & GROUT HOSE REELS
Company: Geo-Loop Inc.

PUMP HOISTS

SEMCO INC. - BASIC PUMP HOISTS
Company: Semco Inc.

WELL PACKERS

LANSAS PRODUCTS - INFLATABLE WELL PACKERS
Company: Vanderlans Lansas Products

WELL SCREENS

WELL SCREENS & SLOTTED PIPE
Company: Alloy Screen Works

Products

Water Quality Engineering: Physical / Chemical Treatment Processes

Water Quality Engineering: Physical / Chemical Treatment Processes

By carefully explaining both the underlying theory and the underlying mathematics, this text enables readers to fully grasp the fundamentals of physical and chemical treatment processes for water and wastewater.

See More Products

Subscribe to The Driller Newscast

Related Articles

  • BrockYordy3.png

    A Third Generation Driller Transitions from Oil and Gas to Geothermal

    See More
  • xgs geothermal 20 million funding.jpeg

    XGS Energy Raises $20 Million for Next-Generation Geothermal

    See More
  • power plant

    Useful Facts for Fixing Problem Water Wells

    See More

Related Products

See More Products
  • deepwater.jpg

    Deepwater Drilling 1st Edition

  • nat-engineered-solutions-dr.gif

    Natural and Engineered Solutions for Drinking Water Supplies

See More Products

Related Directories

  • Wyo-Ben Inc.

    Wyo-Ben, Inc. is a leading family-owned business since 1951, specializing in Wyoming Bentonite Clay based products. Our materials serve global industries including oil, gas, water well drilling, cat litter, and more. Headquartered in Billings, Montana, with manufacturing facilities in Wyoming, we provide high-quality solutions worldwide. For details, visit www.wyoben.com.
  • Geo-Loop Inc.

    We are an employee-owned company in NW Iowa. We have been in the water well and geothermal fields for over 28 years and build a full line of grout pumps, hose reels, loop reels, and other related equipment as well as custom units. Let us help you build your next machine!
  • GeoPro Inc.

    Bentonite based thermal grouts and graphite based thermal enhancement compounds engineered specifically for the geothermal heating and cooling industry.
×
Two wells, primarily used for water-flood oil production, are being used secondarily to produce geothermal power. Source: Will Gosnold photos
The nation’s first-ever commercial enterprise to co-produce electricity from geothermal resources at an oil and gas well has been successfully launched.
Karl Gawell says increased adoption of co-producing geothermal systems could help create more work for drillers.
Will Gosnold, left, of the University of North Dakota and Tim Reinhardt from the DOE accept the 2016 GEA Technological Advancement Award for the research project from Karl Gawell. Source: Geothermal Energy Association

Dig deeper into the drilling and water supply industry!

Build your knowledge with The Driller, covering the people, equipment and technologies across drilling markets.

SIGN UP NOW
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Classifieds
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP