The Driller
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • CLASSIFIEDS
  • EQUIPMENT
  • SAFETY
  • VIDEOS
  • EDUCATION
  • SOURCEBOOK
  • EVENTS
  • SUBMIT
  • ABOUT
  • SIGN UP
cart
facebook twitter linkedin youtube
  • NEWS
  • Water
  • Geothermal
  • Construction
  • Environmental
  • Mining
  • All Industry News
  • EQUIPMENT
  • Rigs & Heavy Equipment
  • Consumables
  • Pumps
  • Featured Products
  • VIDEOS
  • Newscast
  • Drill Talks
  • Ask Brock
  • Emerging Drillers
  • EDUCATION
  • Drilling Business Insights
  • Reference Desk
  • Sponsored Insights
  • EVENTS
  • Conferences & Demo Days
  • Newscast LIVE
  • SUBMIT
  • Drillers @Work
  • ABOUT
  • Contact
  • Advertise
The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP

Ground Water Availability and Use

January 1, 2003


Long-term, systematic measurements of ground water levels provide essential data needed to evaluate changes in ground water storage over time. Using these data, the assessment would include two types of indicators to describe the nationwide status and trends of ground water availability: ground water-level indices and periodic assessments of changes in ground water storage.

No nationwide, systematic ground water level monitoring program exists. At present, there are approximately 42,000 long-term observation wells in the United States that have five or more years of water-level records. The density of existing monitoring wells, however, varies considerably from state to state. The extent of water level monitoring varies even more among major aquifers, with very limited monitoring in many aquifers. Thus, an inventory of existing water-level networks for major aquifer systems would be made early in the assessment to identify data gaps and opportunities for collaboration across the nation.

Ground Water Levels

The assessment should develop several indices of ground water-level changes. Some would represent composite indices for the nation, whereas others would be analogous to sector indices in the stock market and would reflect specific geographic regions or specific types of aquifers, terrains, environments or land-use settings. The various indices would provide water managers, major water users and the public with quick summaries of the magnitudes and significance of trends in water level changes.

To have national or even regional significance, indices of ground water levels have to be based on repeated observations at relatively large numbers of observation wells located in a wide range of representative hydrogeological environments. Ground water systems are dynamic and continually adjust to short-term and long-term changes in climate, ground water withdrawals and land uses. Water levels in wells change in response to a number of types of local and regional stresses, some of which are natural and some of which are human-induced. Because sub-surface hydraulic properties are highly variable, water level responses to stresses vary considerably with location and depth. Stresses take time to propagate through ground water systems, so water level changes are transient phenomena that are strongly affected by distances from the monitoring wells to imposed stresses.

The mechanisms that cause changes in ground water levels and storage can be split into two categories:

Natural mechanisms

  • Recharge

  • Evaporation from the water table

  • Transpiration by vegetation

  • Discharge to streams, springs and seeps

  • Surface-water-level fluctuations in hydraulically connected streams, ponds or lakes

Human-induced mechanisms

  • Ground water withdrawals

  • Deep-well injection

  • Agricultural irrigation

  • Drainage of agricultural lands, swamps and wetlands

  • Artificial recharge of water

  • Wastewater recharge through lagoons, landfills and septic systems

  • Dewatering of mines, tunnels or other structures

  • Leakage from surface water reservoirs

  • Urbanization impacts such as leaky water and sewer lines, lawn irrigation and impervious surfaces (paved roads, parking lots, etc.).

Ground water-level monitoring networks should include wells open to water table aquifers and deep artesian aquifers, wells tapping a variety of rock types, wells located both near and distant from pumping centers, wells located in typical land-use settings and wells that are widely distributed geographically. Because the magnitude of water level fluctuations in wells depends on many factors, water levels in some wells may fluctuate by tens of feet within a day, but in other wells, water levels may change by only tenths of a foot over a year. Therefore, some wells may need to be monitored continuously, whereas others only may need to be measured once per year. Among the several indices that would be derived for this assessment, some might be updated daily, others might be updated monthly and still others annually.

Ground Water Storage

The amount of ground water in storage in the United States is changing (mostly decreasing) in response to ground water withdrawals and other natural and human-induced mechanisms. Data from several ground-water basins and aquifers already show significant depletions in freshwater availability over several decades. An example showing the greatest depletion (or ground water mining) is the High Plains aquifer of the central United States, where ground water withdrawals -- primarily for irrigation -- have caused large-scale regional declines of the water table and accompanying reductions in ground water storage.

Periodic national assessments of changes in aquifer storage due to ground water withdrawals, saltwater intrusion, mine dewatering, land drainage and other mechanisms that affect ground water availability should be undertaken. These assessments would be based on nationwide summaries of observed water level changes and ancillary data describing the aquifers and their changing storage conditions. These assessments would require a greater level of effort than that required for development of the ground water level indices because estimates of changes in ground water storage require knowledge of aquifer storage properties and spatial interpolation of ground water level measurements. The assessment also could provide measures of the nationwide status of ground water supply infrastructure, such as changes in the number and capacity of water supply wells and artificial recharge facilities; these measures would be analogous to those reported for surface water reservoirs.

Changes in ground water use and the effects of ground water development usually are not as variable year-to-year as are those for surface water. Therefore, the periodic assessments of ground water storage could be made at 5- to 10-year intervals. Ground water storage changes should be evaluated by major aquifer and then aggregated into regional and national assessments. A retrospective analysis of changes in ground water storage during the 20th century would be made at the beginning of the assessment. In some cases, historical changes in ground water storage may need to be estimated by use of ground water simulation models that account for all ground water storage processes, including storage changes in confining units. This modeling would build, in part, on work from the USGS Regional Aquifer System Analysis program, which studied and modeled the nation's regional aquifers from 1978 to 1995.

Changes in ground water storage through the past 100 years may be large enough to have global implications. If the volume of ground water stored on the continents has decreased significantly over the past century, then it might represent and account for a measurable fraction of the sea level rise observed during that time period. This would have implications for global climate modeling and predictions of future sea level rise. The impact of ground water declines could be offset by increases in water stored in reservoirs, so global impacts must be assessed in light of both components of water storage. An assessment of changes in ground water storage in the United States perhaps could be integrated into a global perspective in collaboration with other countries and international organizations.

Links

  • water.usgs.gov/pubs/circ/circ1223/html

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • geotechnical drilling rig

    6 Onsite Phrases Environmental Drillers Hate

    Here are six phrases that highlight common frustrations...
    Environmental Monitoring
    By: Jeff Garby
  • Wayne Nash

    Pipe Stuck? Common Causes and Solutions for Drillers

    If you have drilled for any length of time, sooner or...
    Oil & Gas Drilling
    By: Wayne Nash
  • submersible pumps, water well pumps

    Selecting and Sizing Submersible Pump Cable

    This article helps pump installers and servicers decide...
    Pumps
    By: Bob Pelikan
You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the The Driller audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of The Driller or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • demo of a DM450 drilling rig during a customer factory visit
    Sponsored byGeoprobe

    Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

Popular Stories

MainPhotoTwoBrothers.jpg

Two Brothers' Journey Through the Drilling Industry

AI and Drought Concerns

AI’s Growing Thirst for Water and Power

demo of a DM450 drilling rig during a customer factory visit

Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

The Driller Classifieds

COMPRESSORS

EAST WEST MACHINERY & DRILLING IS BUYING AND SELLING AIR COMPRESSORS, AIR BOOSTERS, AIR ENDS & PARTS
Company: East West Machinery

DRILL RIGS

LOOKING FOR LATE MODEL TOPHEADS & DRILLTECH D25'S
Company: Spikes’s Rig Sales

DRILL RIG PARTS

MEETING DRILLERS NEEDS AROUND THE WORLD
Company: East West Machinery

ELEVATORS

SEMCO INC. PIPE ELEVATORS
Company: Semco Inc.

GROUTERS

GROUTING EQUIPMENT - GROUT PUMPS & GROUT HOSE REELS
Company: Geo-Loop Inc.

PUMP HOISTS

SEMCO INC. - BASIC PUMP HOISTS
Company: Semco Inc.

WELL PACKERS

LANSAS PRODUCTS - INFLATABLE WELL PACKERS
Company: Vanderlans Lansas Products

WELL SCREENS

WELL SCREENS & SLOTTED PIPE
Company: Alloy Screen Works

Products

Water Quality Engineering: Physical / Chemical Treatment Processes

Water Quality Engineering: Physical / Chemical Treatment Processes

By carefully explaining both the underlying theory and the underlying mathematics, this text enables readers to fully grasp the fundamentals of physical and chemical treatment processes for water and wastewater.

See More Products

Subscribe to The Driller Newscast

Related Articles

  • Vermeer Hawaii

    Drillers Use HDD to Replace Sewer Line Near Changing Water Table

    See More
  • Ground Water and Surface Water Interaction

    See More
  • Water Conditioning: What Influences the Quality of Ground Water?

    See More
×

Dig deeper into the drilling and water supply industry!

Build your knowledge with The Driller, covering the people, equipment and technologies across drilling markets.

SIGN UP NOW
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Classifieds
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP