The Driller
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • CLASSIFIEDS
  • EQUIPMENT
  • SAFETY
  • VIDEOS
  • EDUCATION
  • SOURCEBOOK
  • EVENTS
  • SUBMIT
  • ABOUT
  • SIGN UP
cart
facebook twitter linkedin youtube
  • NEWS
  • Water
  • Geothermal
  • Construction
  • Environmental
  • Mining
  • All Industry News
  • EQUIPMENT
  • Rigs & Heavy Equipment
  • Consumables
  • Pumps
  • Featured Products
  • VIDEOS
  • Newscast
  • Drill Talks
  • Ask Brock
  • Emerging Drillers
  • EDUCATION
  • Drilling Business Insights
  • Reference Desk
  • Sponsored Insights
  • EVENTS
  • Conferences & Demo Days
  • Newscast LIVE
  • SUBMIT
  • Drillers @Work
  • ABOUT
  • Contact
  • Advertise
The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP
MarketsIndustrial DrillingGeothermal

4 Production Drilling Lessons from Ball State’s Geothermal Project

Big Job Shows Mindset Shift from Water Wells to Production

By Brock Yordy
Ball State University geothermal project

The Driller contributing writer Brock Yordy was mud engineer just starting out when he joined a team working the massive Ball State University geothermal project, which began in 2009. Work took place on an active college campus.

Source: Brock Yordy

Ball State University geothermal project

The Triton Drilling teams drilled their first five holes and used knowledge gained there to get their drilling program in order for the 573 holes on their part of the project.

Source: Brock Yordy

Ball State University geothermal project

Drilling was only half the battle. Installing the loops required a careful calibration of fluid density and weights to keep things on track.

Source: Brock Yordy

Ball State University geothermal project
Ball State University geothermal project
Ball State University geothermal project
February 23, 2022

The demand for drilling companies capable of production drilling has climbed an all-time high. From East Coast to West Coast, you hear the same, significant theme at conventions: How do we to recruit water well drillers into production drilling for geothermal and other industrial applications?

As a young mud engineer at the beginning of my career, I had the opportunity to work and collaborate with a team of water well drilling companies from central Indiana. Ortman Drilling, Moss Well Drilling, and Dilden Bros. Well Drilling joined to create Triton Geothermal. Together they drilled the south field of Phase 1 for Ball State University’s 2009 geothermal project. That year, it was one of the largest ground-source heat loop projects in the United States. Phase 1 consisted of roughly 1,800 holes, with the south field alone totaling 573 holes. I recently reread my field notebook from 12 years ago, and it made me smile to think about all the great lessons learned with the team at Triton.


Lesson One: Understanding the Unknown

One of the greatest lessons I took away is, when tackling a large production drilling project, to utilize the first five holes to dial in the drilling program. It starts with the first hole, taking time to understand the transitions from overburden to the different geology layers from zero to total depth. At Ball State, the top 80 to 100 feet was a mix of sand, gravel, some clay and cobles. At 80 to 100 feet, it transitioned to broken limestone with shale seams to the bottom. Triton and I took time drilling the first few holes trying different drilling fluid combinations to stabilize the top unconsolidated formation, and slowly changing fluid mixes to drill limestone and reactive shales for 300 additional feet.

We determined that a single bit and one universal drilling fluid style would prove neither productive nor profitable for completing these holes. Therefore, we designed our drilling program in two parts. The first part involved drilling the unconsolidated zone on each hole with a traditional tricone and drilling fluid designed for both filtration control and stabilization of a porous formation with cobbles. Next, the team would trip out, set casing to the limestone, and trip in with a PDC bit to drill limestone and shale efficiently. For this part of each hole, we changed the drilling fluid mix to one that inhibited reactive shales and could lift limestone chips from a total depth of 400 feet.


Lesson Two: The Little Details

Beyond understanding the geology and the first five holes, we had to consider the multiple types of rigs Triton was operating and how that affected hole completion. The team was using a Versa Drill, a T2 Atlas Copco (at the time) and a 1980 Speedstar 15 table-drive. Each rig had different rotation speeds and methods for increasing pulldown. In addition, the different rig capabilities and even the different drillers on the platform caused fluctuations in bit life and drilling fluids consumption.

We found it essential to document how each rig and hole utilized consumables. For example, the Speedstar’s rotation speed decreased the number of holes a PDC bit would last. At the same time, that rig’s rotation speed created larger drill cuttings. This allowed for a cleaner drilling fluid that required less new bentonite and polymers to maintain its qualities. Conversely, the two top-drive rigs could maintain longer bit life but required much more frequent rebuilding of the drilling fluids.


Lesson Three: Drilling is Only 50% of Completion

After understanding how the drillers and rigs interacted with the downhole conditions from top to bottom, we took time to focus on the physics of installing two loops with clips in one hole. The original specification of the project required two 1-inch loops, but also clips that would spread the loops apart. The goal was to force the loops closer to the borehole wall, allowing for enhanced conductivity.

In production geothermal drilling, the hole is only half the battle. The second half is installing the loop with tremie and grouting to the surface. Heat Loops, just like PVC casing and screen, have a degree of buoyancy, which changes with the density of the drilling fluid in the hole. Standard practice usually involves maintaining a fluid density under 9.5 pounds per gallon, filling the loops with water and adding steel weight to overcome the buoyancy. However, we found installing two loops akin to pushing a pontoon boat down the hole.

The team utilized Mud Puppy solid control units and regular drilling fluid testing/rebuilding to maintain a fluid density below 9 pounds per gallon. However, even with a 9.0 mud weight, we required additional steel weight to overcome the floating of the loops. Two loops going into one hole require even the best drillers to methodically control all parameters — from the drilling phase to how loops are set to go in the hole.


Lesson Four: Production Drilling is More than just 1,000 Feet a Day

Once the Triton team had complete ownership over lessons one through three, they could focus on lesson four: production drilling. The key to staying on schedule and profitable is maintaining a consistent trend of multiple wells completed in any given day or week. The industrial drilling industry loves to pull trends from the oil and gas industry. One such trend I regularly encounter in geothermal production drilling is the idea you can only achieve greatness and profitability when a rig drills a minimum of 1,000 feet a day. Unfortunately, it isn’t about meeting or exceeding 1,000 feet a day. We, as an industry, misinterpreted the intent, which isn’t about footage. It’s about setting an achievable milestone that you can meet consistently, every day and week. That consistency virtually ensures that, at the end of the month, the amount of days drilling reflect a profitable return on investment.

Once you achieve your rig’s goal, focus the remainder of your time on maintenance and prep for the next 1,000 feet drilled tomorrow. This type of planning, preparation and maintenance allows for success week after week.

I know what you are thinking. “Brock, I can get 4,000 feet in by Wednesday afternoon, then coast the rest of the week and leave early on Friday.” I would tell you to check that driller ego and understand that achieving greatness isn’t about one rig hitting its goal, but all rigs onsite drilling their goal for the week. Once you achieve your rig’s goal, focus the remainder of your time on maintenance and prep for the next 1,000 feet drilled tomorrow. This type of planning, preparation and maintenance allows for success week after week. After maintenance and prep, help fellow crews. The team at Triton Geothermal understood the importance of executing consistently, maintaining their equipment and assisting other rigs when required, which made a massive impact on a successful outcome.

The mindset required to transition from water well to production driller is not easy. We believe drilling water wells is fun because we regularly drill new locations with new unknowns and challenges. I often hear drillers say, “There are no challenges to production drilling. Once you figure out the holes, you just pull levers until it’s over.” However, there are many challenges in production drilling, with one of the most significant ones being preventing the team from getting bored and complacent. Bad situations happen when a crew becomes complacent on any jobsite.

Ironically, I found it kind of like playing chess to complete over 500 holes 15 feet apart while maintaining a schedule that involved other contractors completing their own work (and working on an active college campus). There are many ways to win and some wins look more elegant. Apply these lessons for a little more elegance on your next industrial drilling project.

KEYWORDS: geothermal drilling training and education

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Brock yordy author

Drilling expert Brock Yordy is a regular The Driller contributing writer. If you have a question for Ask Brock, contact him at 269-348-5156 or questions@askbrock.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • geotechnical drilling rig

    6 Onsite Phrases Environmental Drillers Hate

    Here are six phrases that highlight common frustrations...
    Opinions
    By: Jeff Garby
  • Wayne Nash

    Pipe Stuck? Common Causes and Solutions for Drillers

    If you have drilled for any length of time, sooner or...
    Opinions
    By: Wayne Nash
  • submersible pumps, water well pumps

    Selecting and Sizing Submersible Pump Cable

    This article helps pump installers and servicers decide...
    Opinions
    By: Bob Pelikan
You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the The Driller audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of The Driller or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • demo of a DM450 drilling rig during a customer factory visit
    Sponsored byGeoprobe

    Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

Popular Stories

MainPhotoTwoBrothers.jpg

Two Brothers' Journey Through the Drilling Industry

AI and Drought Concerns

AI’s Growing Thirst for Water and Power

demo of a DM450 drilling rig during a customer factory visit

Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

The Driller Classifieds

COMPRESSORS

EAST WEST MACHINERY & DRILLING IS BUYING AND SELLING AIR COMPRESSORS, AIR BOOSTERS, AIR ENDS & PARTS
Company: East West Machinery

DRILL RIGS

LOOKING FOR LATE MODEL TOPHEADS & DRILLTECH D25'S
Company: Spikes’s Rig Sales

DRILL RIG PARTS

MEETING DRILLERS NEEDS AROUND THE WORLD
Company: East West Machinery

ELEVATORS

SEMCO INC. PIPE ELEVATORS
Company: Semco Inc.

GROUTERS

GROUTING EQUIPMENT - GROUT PUMPS & GROUT HOSE REELS
Company: Geo-Loop Inc.

PUMP HOISTS

SEMCO INC. - BASIC PUMP HOISTS
Company: Semco Inc.

WELL PACKERS

LANSAS PRODUCTS - INFLATABLE WELL PACKERS
Company: Vanderlans Lansas Products

WELL SCREENS

WELL SCREENS & SLOTTED PIPE
Company: Alloy Screen Works

Products

Water Quality Engineering: Physical / Chemical Treatment Processes

Water Quality Engineering: Physical / Chemical Treatment Processes

By carefully explaining both the underlying theory and the underlying mathematics, this text enables readers to fully grasp the fundamentals of physical and chemical treatment processes for water and wastewater.

See More Products

Subscribe to The Driller Newscast

Related Articles

  • high-production drilling

    Tips for Fast, Efficient Production Drilling

    See More
  • Ball State

    Ball State University Dumps Coal for Geothermal

    See More
  • HAZWOPER training

    Well Drillers Can Benefit from Lessons of Other Industries

    See More

Related Products

See More Products
  • nat-engineered-solutions-dr.gif

    Natural and Engineered Solutions for Drinking Water Supplies

See More Products

Related Directories

  • SIMCO Drilling Equip. Inc.

    SIMCO Drilling Equipment manufactures and sells both new and used drilling rigs. All SIMCO drill rigs are fully designed, built, and sold from our location in Osceola, Iowa and has for over 50 years. We are not just an assembly plant at SIMCO. We take pride in our drill rigs and stand behind the best warranty in the industry. We specialize in water well drill rigs and geotechnical drill rigs. We also build drill rigs for pavement coring, soil sampling, geothermal heating and cooling, and many more. www.simcodrill.com
  • Groundwater Supply Co. Inc.

    A family-owned business, opened in 1992, located in Central Mass. We are a wholesale supplier and source for Water Well, Environmental, Geothermal, Geotechnical and Construction drilling. We represent many manufactures and have most everything you could possibly need for your drilling project.
  • Givens International Drilling Supplies Inc.

    DTH hammers; hammer bits, tri-cone bits, subs, drill steel, stabilizers, lubricants, casing, pipe wrench, pump parts, drive shoes, casing advancement, drilling mud, thread compound, grease.
×
The Driller contributing writer Brock Yordy was mud engineer just starting out when he joined a team working the massive Ball State University geothermal project, which began in 2009. Work took place on an active college campus. Source: Brock Yordy
The Triton Drilling teams drilled their first five holes and used knowledge gained there to get their drilling program in order for the 573 holes on their part of the project. Source: Brock Yordy
Drilling was only half the battle. Installing the loops required a careful calibration of fluid density and weights to keep things on track. Source: Brock Yordy

Dig deeper into the drilling and water supply industry!

Build your knowledge with The Driller, covering the people, equipment and technologies across drilling markets.

SIGN UP NOW
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Classifieds
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP