The Driller
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • CLASSIFIEDS
  • EQUIPMENT
  • SAFETY
  • VIDEOS
  • EDUCATION
  • SOURCEBOOK
  • EVENTS
  • SUBMIT
  • ABOUT
  • SIGN UP
cart
facebook twitter linkedin youtube
  • NEWS
  • Water
  • Geothermal
  • Construction
  • Environmental
  • Mining
  • All Industry News
  • EQUIPMENT
  • Rigs & Heavy Equipment
  • Consumables
  • Pumps
  • Featured Products
  • VIDEOS
  • Newscast
  • Drill Talks
  • Ask Brock
  • Emerging Drillers
  • EDUCATION
  • Drilling Business Insights
  • Reference Desk
  • Sponsored Insights
  • EVENTS
  • Conferences & Demo Days
  • Newscast LIVE
  • SUBMIT
  • Drillers @Work
  • ABOUT
  • Contact
  • Advertise
The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP
MarketsIndustrial DrillingGeothermal

Geothermal Drilling Challenges -- Part 1: Lost Circulation

June 1, 2011

The most expensive problem routinely encountered in geothermal drilling is lost circulation, which is the loss of drilling fluid to pores or fractures in the rock formations being drilled. Lost circulation represents an average of 10 percent of total well costs in mature geothermal areas, and often accounts for more than 20 percent of the costs in exploratory wells and developing fields. Well costs, in turn, represent 35 percent to 50 percent of the total capital costs of a typical geothermal project. Therefore, roughly 3.5 percent to 10 percent of the total costs of a geothermal project can be attributable to lost circulation.

This loss is harmful for several reasons, and the tendency toward lost circulation is aggravated by the pressure imbalance between the relatively cool (denser) column of drilling fluid and the hot (lighter) geothermal fluids in the formation.

If the drilling fluid fails to clean the hole and return cuttings to the surface, the cuttings can fall back onto the bottom-hole assembly and stick the drilling assembly.

Drilling fluid – especially in many high-temperature formulations – is expensive, and losing it to the formation instead of re-circulating it is costly.

In geothermal wells, the production zone usually is a lost-circulation zone, so it can be difficult to cure a harmful lost-circulation zone while preserving its productive potential.

Lost circulation can lower the fluid level in a well suddenly. Decreasing the static head of drilling fluid in a hot formation can allow the formation fluids to enter the wellbore, causing a loss of well control. This can occur either in productive or non-productive zones.

In the intervals that are not to be produced, the lost-circulation zone must be sealed to provide a wellbore that can be cased and cemented to the surface, or the cementing process must accommodate getting a good cement job when a lost-circulation zone is present. Adequately cementing the casing through lost-circulation zones is a major problem and a major cost.

Placement of lost-circulation materials (LCM) is difficult because the top and bottom of the loss zone often are not well known. The LCM or cement being used to heal the loss zone are especially likely to migrate away from the targeted placement zone if drilling has continued well past it into another loss zone, or if there is considerable rat hole below the original loss zone.

In many areas where geothermal drilling is done, water is in short supply.

Combating lost circulation can be approached in different ways:

  • drill ahead with lost circulation;
  • drill with a lightweight drilling fluid that will have a static head less than the pore pressure in the formation;
  • mix the drilling fluid with fibrous material or particles that will plug the loss apertures in the formation;
  • or pause in the drilling, and try to seal the loss zones with some material that can be drilled out as the hole advances.


Drill Ahead

If an adequate water supply is available, it is practical to drill without returns. If fresh water is not available, produced brine – that normally would be re-injected – can be used for drilling wells within a developed project. Drilling without returns frequently is used when core drilling, where the cuttings are very fine, and where much of the rock comes out of the hole in the form of core. There have been many rotary-drilled holes where intervals of great length have been drilled with complete lost circulation. There are special techniques required to prevent formation collapse and to keep from getting stuck. The highest risk is when only partial returns are obtained, as the low annular velocities above the loss zones may not be adequate to clean the hole. High viscosity sweeps usually are used to reduce this risk. Once total loss is encountered, pumping water at high rates down the annulus, as well as down the drill pipe, will flush the cuttings away from the wellbore, preventing any sticking problems, and providing positive wellbore pressure to hold up weak formations.

Another technology that is useful with lost circulation is dual-tube reverse circulation, but careful consideration must be given to the issues raised about well control.


Lightweight Fluids

There are three categories of lightweight fluids – air, foam and aerated fluids from the lowest density to the highest density. Air only can be used where liquid production is minimal or non-existent. Foam will tolerate some water dilution, but not much, while aerated fluids can tolerate a significant amount of dilution.

Aqueous (water-based) foam is attractive because of its simplicity, but it is important to use the proper surfactant that has stable properties at high temperature. Considerable modeling was done in the early development of aqueous foam for geothermal drilling. In addition to numerical models of the foam structure and rheology, a laboratory flow-loop measured pressure, temperature and flow rate at different points, to allow experimental confirmation of a rheological model.

Aerated fluids – liquid with gases injected into it – produce a static head less than or only slightly greater than the pore pressure, and are a common remedy for lost circulation in geothermal drilling. It also reduces the probability of differential sticking. Aerated drilling is used extensively now in many locations, and some claim its use not only avoids problems with lost circulation, but improves the well’s productivity after drilling, although this is a controversial topic in the industry.


Lost-circulation Materials

Lost-circulation problems generally can be divided into two regimes, differentiated by whether the fracture aperture is smaller or larger than the bit’s nozzle diameter. When severe lost circulation is anticipated, it is usual to run large jets or no jets in the bit, to better accommodate pumping LCM. Clearly, LCM particles that will plug the bit are unacceptable, but for smaller fractures or for matrix permeability, the wellbore theoretically can be sealed by pumping solid or fibrous plugging material mixed with the drilling the fluid. This method is much less effective with larger fractures.

Many substances have been used in the oil-and-gas industry to plug lost-circulation zones, but most of them have been organic or cellulosic materials that cannot withstand geothermal temperatures. This actually is an advantage if the lost-circulation zones are in the productive formations, as the LCM will degrade as the well heats up, minimizing any damage to the productive formations. Lost-circulation zones in oil and gas also tend to be dominated by matrix permeability, rather than the much larger fracture apertures common in geothermal reservoirs. Although traditional organic LCM can be used as long as the circulating temperature prevents degradation, LCM, in general, often has been unsuccessful in geothermal drilling. Several candidate materials that will withstand high temperature have been identified, but they only should be used in the non-productive intervals, because they would permanently plug the productive intervals.


Wellbore Sealing

Fractures too large to be plugged by LCM can only be sealed by withdrawing the drill string from the hole and injecting some liquid or viscous material that will enter the fractures, solidify to seal them, and then have its residue removed by resumption of drilling. Conventional lost-circulation treatment practice in geothermal drilling is to position the lower end of an open-end drill pipe near the suspected loss zone, and pump cement downhole. The objective is to emplace enough cement into the loss zone to seal it. However, this does not always occur. There are many issues in getting cement placed into the fractures that are causing the loss zone. Because of its higher density relative to the wellbore fluid, the cement often channels through the wellbore fluid and settles to the bottom of the wellbore (the larger diameters of geothermal wells aggravate this problem).

If the loss zone is not on bottom, the entire wellbore below the loss zone sometimes must be filled with cement before a significant volume of cement flows into the loss zone. Consequently, a large volume of hardened cement often must be drilled to re-open the hole, which wastes time and contaminates the drilling mud with cement fines.

Furthermore, because of the relatively small aperture of many loss-zone fractures, the loss zone may preferentially accept wellbore fluids into the fractures instead of cement, because of the high concentration of solids in cement. This causes dilution of the cement in the loss zone, and loss of integrity of the subsequent cement plug. If there are any cross flows in the wellbore, it will contaminate and dilute the cement, making it impossible to get a cement plug. As a result, multiple cement treatments often are required to plug a single loss zone, with each plug incurring significant time and material costs.


This article is provided through the courtesy of Sandia National Laboratories. It is excerpted from the “Handbook of Best Practices for Geothermal Drilling,” written by John Finger and Doug Blankenship.  

KEYWORDS: drilling fluids management geothermal drilling lost circulation

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • geotechnical drilling rig

    6 Onsite Phrases Environmental Drillers Hate

    Here are six phrases that highlight common frustrations...
    Geotechnical Investigation
    By: Jeff Garby
  • Wayne Nash

    Pipe Stuck? Common Causes and Solutions for Drillers

    If you have drilled for any length of time, sooner or...
    World According to Wayne
    By: Wayne Nash
  • submersible pumps, water well pumps

    Selecting and Sizing Submersible Pump Cable

    This article helps pump installers and servicers decide...
    Opinions
    By: Bob Pelikan
You must login or register in order to post a comment.

rock drilling equipments

Bin
March 7, 2012
Dear Sir or Madam, We are manufacturing and exporing quality rock drilling tools to more than 70 countries and regions those years, so wish to develop business with your esteemed company. The following items are our core products, for you reference. (1) Top hammer drilling tools, including button bits(R25,R32,R38,T38,T45,T51,GT60, SR28,SR32,SR35,ST58,ST68, GT60), drill rods,extension rods, M/F rods, shank adapter, coupling and so forth; (2) Taper bits, taper rods, cross bits, chisel bits, shank rods,; (3) DTH hammers, DTH bits, DTH drill rods,ODEX, ODS, and others spares for DTH drilling; (4) Rotary drag bits, tricone bits for kinds of IADC code and bit types; (5) Diamond core bits, drill rods, casings, casing shoes, and core barrels(AQ,BQ,NQ,HQ,T2, T6, BW,NW,HW, DCDMA, NWM, HWM, and other series); (6) Anchor drill rods, anchor drill bits, nut, plate and other spares for anchor bolting drill and so forth; We will provide you with the quality products at competitive cost. Wait for your kindly inquiry. Thank you! Best regards, Mr.Bin Physical address: Guizhou Sinodrills Equipment Co,.Ltd. Guoyi mansion 16th floor Zhonghua North road No.3, Guiyang City Guizhou province China Homepage: www.sinodrills.com www.sinodrills.es www.sinodrills.de www.sinodrills.pt www.sinodrills.ru www.sinodrills.fr Tel(1):86 851 6821628-8009(EXT) Tel(2):86 851 6800738-8009(EXT) Fax: 86 851 6830552 Email(1): bin@sinodrills.com Email(2): sinodrills@yahoo.com.cn Email(3): drilling83@gmail.com

Report Abusive Comment

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the The Driller audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of The Driller or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • demo of a DM450 drilling rig during a customer factory visit
    Sponsored byGeoprobe

    Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

Popular Stories

MainPhotoTwoBrothers.jpg

Two Brothers' Journey Through the Drilling Industry

AI and Drought Concerns

AI’s Growing Thirst for Water and Power

demo of a DM450 drilling rig during a customer factory visit

Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

The Driller Classifieds

COMPRESSORS

EAST WEST MACHINERY & DRILLING IS BUYING AND SELLING AIR COMPRESSORS, AIR BOOSTERS, AIR ENDS & PARTS
Company: East West Machinery

DRILL RIGS

LOOKING FOR LATE MODEL TOPHEADS & DRILLTECH D25'S
Company: Spikes’s Rig Sales

DRILL RIG PARTS

MEETING DRILLERS NEEDS AROUND THE WORLD
Company: East West Machinery

ELEVATORS

SEMCO INC. PIPE ELEVATORS
Company: Semco Inc.

GROUTERS

GROUTING EQUIPMENT - GROUT PUMPS & GROUT HOSE REELS
Company: Geo-Loop Inc.

PUMP HOISTS

SEMCO INC. - BASIC PUMP HOISTS
Company: Semco Inc.

WELL PACKERS

LANSAS PRODUCTS - INFLATABLE WELL PACKERS
Company: Vanderlans Lansas Products

WELL SCREENS

WELL SCREENS & SLOTTED PIPE
Company: Alloy Screen Works

Products

Water Quality Engineering: Physical / Chemical Treatment Processes

Water Quality Engineering: Physical / Chemical Treatment Processes

By carefully explaining both the underlying theory and the underlying mathematics, this text enables readers to fully grasp the fundamentals of physical and chemical treatment processes for water and wastewater.

See More Products

Subscribe to The Driller Newscast

Related Articles

  • Brock Yordy

    For Drilling Jobs: Combating Lost Circulation

    See More
  • Wayne Nash

    How to Handle Lost Circulation on Drilling Jobs

    See More
  • Compact Rigs a Boost to Geothermal Drilling - Part 1

    See More

Related Products

See More Products
  • nat-engineered-solutions-dr.gif

    Natural and Engineered Solutions for Drinking Water Supplies

See More Products

Related Directories

  • SIMCO Drilling Equip. Inc.

    SIMCO Drilling Equipment manufactures and sells both new and used drilling rigs. All SIMCO drill rigs are fully designed, built, and sold from our location in Osceola, Iowa and has for over 50 years. We are not just an assembly plant at SIMCO. We take pride in our drill rigs and stand behind the best warranty in the industry. We specialize in water well drill rigs and geotechnical drill rigs. We also build drill rigs for pavement coring, soil sampling, geothermal heating and cooling, and many more. www.simcodrill.com
  • Numa Hammers & Bits

    For forty years, Numa has built a strong legacy of high quality, Made in the USA rock drilling hammers, bits, and accessories for drilling DTH, HDD, and reverse circulation holes 3½ to 50½ inches (89 - 1283 mm) in diameter. Our long history of innovation and expertise has resulted in a wide range of reliable DTH and HDD products perfectly suited for hard rock, overburden, or loose strata formations. Numa provides some of the industry’s top rock drilling experts providing a wide array of insight on drilling methods, tooling, fluids, bits, reamers, rock tools, swivels, and more.
  • Givens International Drilling Supplies Inc.

    DTH hammers; hammer bits, tri-cone bits, subs, drill steel, stabilizers, lubricants, casing, pipe wrench, pump parts, drive shoes, casing advancement, drilling mud, thread compound, grease.
×

Dig deeper into the drilling and water supply industry!

Build your knowledge with The Driller, covering the people, equipment and technologies across drilling markets.

SIGN UP NOW
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Classifieds
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP