The Driller
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • CLASSIFIEDS
  • EQUIPMENT
  • SAFETY
  • VIDEOS
  • EDUCATION
  • SOURCEBOOK
  • EVENTS
  • SUBMIT
  • ABOUT
  • SIGN UP
cart
facebook twitter linkedin youtube
  • NEWS
  • Water
  • Geothermal
  • Construction
  • Environmental
  • Mining
  • All Industry News
  • EQUIPMENT
  • Rigs & Heavy Equipment
  • Consumables
  • Pumps
  • Featured Products
  • VIDEOS
  • Newscast
  • Drill Talks
  • Ask Brock
  • Emerging Drillers
  • EDUCATION
  • Drilling Business Insights
  • Reference Desk
  • Sponsored Insights
  • EVENTS
  • Conferences & Demo Days
  • Newscast LIVE
  • SUBMIT
  • Drillers @Work
  • ABOUT
  • Contact
  • Advertise
The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP

Tech Topics: Three-phase Electricity

By Bob Pelikan
February 1, 2009

The last two articles in this series on electricity focused on single-phase pumped water systems. This article will be the first of several on three-phase systems. This month, we will get into some basic concepts of electric power, the difference between single- and three-phase, frequency, transformers and balancing three-phase power.

To understand how electricity causes an electric motor to turn, and to understand the difference between single- and three-phase power, let us relate electric motors to a water wheel. Picture a water wheel next to a waterfall. This particular wheel has just one cup on it that fills with water whenever it is positioned under the waterfall. The weight of the water in the cup causes the wheel to turn. The wheel has just enough momentum to complete one revolution, but is kept turning by the re-filling of the cup.

A single-cup water wheel is like a single-phase electric motor. They work fine for small jobs that don’t take much inertia to get them spinning, or that aren’t pulling too much of a load, but getting all your energy input only once per revolution isn’t the most efficient way to transfer energy.  

Three-phase power, on the other hand, is like a water wheel with three cups, spaced equally around the wheel. Let’s call the cups L1, L2 and L3. As the wheel makes its way around, completing one revolution, it gets boosted three times, instead of just once. It doesn’t spin any faster, but it is easier to get it spinning in the first place (more torque), and it is more efficient because more of the water is being used to make the wheel turn.

In an electric motor, electricity is the water, the cups are the stator, and the wheel is the armature. A single-phase motor gets one “cup” of electricity per revolution, and a three-phase motor gets three. Three “cups” per revolution is a much more efficient way to get an armature spinning, and to keep it spinning. That is why large motors are three-phase. 

Frequency of the Power

One complete revolution is called a cycle in electricity. As I said earlier, a single-phase motor gets one hit per cycle, and a three-phase motor gets three. The number of cycles per second is known as the frequency of the power, and is described in terms of hertz. The speed of rotation of an electric motor, rated in terms of revolutions per minute (RPM), is determined by the frequency of the power. (A motor’s RPM also is determined by the basic design of the motor, which will be covered later.) In North America, the utilities deliver 60-hertz power, but in many other parts of the world, the standard is 50 hertz. Motors will run on either frequency, but will turn more slowly on 50-hertz power, and thus develop less horsepower. A motor that develops 5 HP at 60 hertz only will put out just over 4 HP at 50 hertz. There is less work going into keeping the motor spinning, so it will turn slower, and produce less power.

Transformer Issues

Understanding how the utilities deliver three-phase power to end-users helps us understand some of the electric-motor failure modes. Whether the power is generated by nuclear energy, hydro, steam, natural gas, oil, coal or wind, the utilities use three-phase generators. They deliver the three-phase power to the grid at very high voltages for transmission efficiencies. To bring it down to a usable voltage like 240 volts or 480 volts, they use transformers, usually a separate one on each phase.

Figure 1 shows a three-transformer, three-phase 240-volt system. L1, L2 and L3 represent the three legs of the three-phase power. Single-phase 240-volt power is available between any two of the legs. This is an important concept to understand because it explains how three-phase power can become unbalanced; that is, the voltage in all three legs is not the same.

Voltage unbalance is the leading power-quality problem that results in motor overheating and premature motor failure. Voltage unbalance degrades the performance and shortens the life of a three-phase motor. Voltage unbalance at the motor stator terminals causes phase-current unbalance far out of proportion to the voltage unbalance. Unbalanced currents lead to torque pulsations, increased vibrations and mechanical stresses, increased losses and motor overheating, which result in a shorter winding insulation life.

Unbalance can occur when the single-phase loads on the three legs downstream from the transformers are not equal. In Figure 2, Farmer Jim on the right has a three-phase pump on his farm. His neighbor Rob has a machine shop, but all of his machines run on single-phase motors hooked up to L2 and L3 of the three-phase power on the pole. Next to Rob is Bob’s Dairy, and all of Bob’s pumps and equipment also are running on L2/L3 single-phase power. Since the L2/L3 pair is carrying a heavy single-phase load from Jim’s neighbors, the voltage of that pair will be reduced by the time it gets to Jim’s farm, which will cause an unbalance condition in Jim’s three-phase motor.

Winding damage likely will occur because the windings served by that pair will carry more of the load and overheat. A relatively small unbalance in voltage will cause a considerable increase in temperature rise. In the phase with the highest current, the percentage increase in temperature rise will be approximately two times the square of the percentage voltage unbalance. To illustrate the severity of this condition, an approximate 3.5 percent voltage unbalance will cause an approximate 25-percent increase in temperature rise.

Submersible motor manufacturers recommend not exceeding 10-percent current unbalance at the rated input motor load, and 5 percent at service factor load for their motors. If your power is more out of balance than this, you still may able to operate a three-phase motor by oversizing the motor such that the overloaded winding is not carrying more load than it was designed to carry. For instance, a 10-HP pump operating on three-phase power that is 15 percent out of balance may run just fine with a 15-HP motor. Consult your motor manufacturer for its recommendation for your particular situation.

To calculate the percentage of current unbalance:

1. Add the three line amps values together.

2. Divide the sum by 3, giving you the average current.

3. Pick the amp value that is furthest from the average current (either high or low).

4. Determine the difference between this amp value and the average.

5. Divide the difference by the average. Multiply the result by 100 to determine the percent of unbalance.

There is another three-phase configuration, called “open delta,” that uses two transformers instead of three. Open-delta power is harder to balance than conventional three-phase power, so extra care must be taken to ensure that the motor will not be damaged. One source for a more complete description of open delta is Franklin Electric’s Submersible Motor Application Manual. If you do not have a copy, call Franklin at 800-348-2420. Another good source for information on three-phase power is the Electrical Engineering Pocket Handbook, published by the Electrical Apparatus Service Association. Phone 314-993-2220 to request a copy.

Next month, we look at devices that can be used to convert single-phase power to three-phase. ’Til then ... . 
ND

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Bob is a regular contributor to The Driller. Contact bobpelikan@comcast.net to request a copy of The Pump Book, a compilation of Bob's columns for reference or training available for only $20.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • geotechnical drilling rig

    6 Onsite Phrases Environmental Drillers Hate

    Here are six phrases that highlight common frustrations...
    Geotechnical Investigation
    By: Jeff Garby
  • Wayne Nash

    Pipe Stuck? Common Causes and Solutions for Drillers

    If you have drilled for any length of time, sooner or...
    Oil & Gas Drilling
    By: Wayne Nash
  • submersible pumps, water well pumps

    Selecting and Sizing Submersible Pump Cable

    This article helps pump installers and servicers decide...
    Markets
    By: Bob Pelikan
You must login or register in order to post a comment.
Unable to fetch comments.

Report Abusive Comment

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the The Driller audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of The Driller or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • demo of a DM450 drilling rig during a customer factory visit
    Sponsored byGeoprobe

    Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

Popular Stories

MainPhotoTwoBrothers.jpg

Two Brothers' Journey Through the Drilling Industry

Tariffs

Tariffs Shake Up the Drilling Industry

AI and Drought Concerns

AI’s Growing Thirst for Water and Power

The Driller Classifieds

COMPRESSORS

EAST WEST MACHINERY & DRILLING IS BUYING AND SELLING AIR COMPRESSORS, AIR BOOSTERS, AIR ENDS & PARTS
Company: East West Machinery

DRILL RIGS

LOOKING FOR LATE MODEL TOPHEADS & DRILLTECH D25'S
Company: Spikes’s Rig Sales

DRILL RIG PARTS

MEETING DRILLERS NEEDS AROUND THE WORLD
Company: East West Machinery

ELEVATORS

SEMCO INC. PIPE ELEVATORS
Company: Semco Inc.

GROUTERS

GROUTING EQUIPMENT - GROUT PUMPS & GROUT HOSE REELS
Company: Geo-Loop Inc.

PUMP HOISTS

SEMCO INC. - BASIC PUMP HOISTS
Company: Semco Inc.

WELL PACKERS

LANSAS PRODUCTS - INFLATABLE WELL PACKERS
Company: Vanderlans Lansas Products

WELL SCREENS

WELL SCREENS & SLOTTED PIPE
Company: Alloy Screen Works

Products

Water Quality Engineering: Physical / Chemical Treatment Processes

Water Quality Engineering: Physical / Chemical Treatment Processes

By carefully explaining both the underlying theory and the underlying mathematics, this text enables readers to fully grasp the fundamentals of physical and chemical treatment processes for water and wastewater.

See More Products

Subscribe to The Driller Newscast

Related Articles

  • Tech Topics: Three-phase Electricity

    See More
  • Tech Topics: Phase Converters: Run a Three-phase Pump on Single-phase Power

    See More
  • Tech Topics: Three-phase Pump Control Panels

    See More

Related Products

See More Products
  • 9780128231456.jpg

    Seismic While Drilling

  • drilling.jpg

    Clay Science in Drilling and Drilling Fluids

  • 1119083621.jpg

    Formulas and Calculations for Drilling Operations, 2nd Edition

See More Products

Related Directories

  • Rock-Tech International

    DTH Hammers (2" - 30"), Hammer Bits (2 3/4"- 42"), Std./Custom Hole Openers, PDC Bits, Drag Bits; Lost Bit head retrieval system; Drill Pipe; Tri-Cone TCI and Mill Tooth Rotary Bits.
×

Dig deeper into the drilling and water supply industry!

Build your knowledge with The Driller, covering the people, equipment and technologies across drilling markets.

SIGN UP NOW
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Classifieds
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP