The Driller
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • CLASSIFIEDS
  • EQUIPMENT
  • SAFETY
  • VIDEOS
  • EDUCATION
  • SOURCEBOOK
  • EVENTS
  • SUBMIT
  • ABOUT
  • SIGN UP
cart
facebook twitter linkedin youtube
  • NEWS
  • Water
  • Geothermal
  • Construction
  • Environmental
  • Mining
  • All Industry News
  • EQUIPMENT
  • Rigs & Heavy Equipment
  • Consumables
  • Pumps
  • Featured Products
  • VIDEOS
  • Newscast
  • Drill Talks
  • Ask Brock
  • Emerging Drillers
  • EDUCATION
  • Drilling Business Insights
  • Reference Desk
  • Sponsored Insights
  • EVENTS
  • Conferences & Demo Days
  • Newscast LIVE
  • SUBMIT
  • Drillers @Work
  • ABOUT
  • Contact
  • Advertise
The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP
Drilling Industry News

MIT: Forecasting and Preventing Pipe Fractures

August 23, 2011

A computer model that tests automobile components for crashworthiness also could be of use to the oil and gas industry, according to researchers at MIT's Impact and Crashworthiness Laboratory, who now are using their simulations of material deformation in car crashes to predict how pipes may fracture in offshore drilling accidents.

As a case study, the team simulated the forces involved in the 2010 Deepwater Horizon explosion in the Gulf of Mexico, finding that the model accurately predicted the location and propagation of cracks in the oil rig's drill riser - the portion of pipe connecting the surface drilling platform to the seafloor. In a side-by-side comparison, the researchers found that their model's reconstruction closely resembled an image of the actual fractured pipe taken by a remotely operated vehicle shortly after the accident occurred. The group presented their results at the International Offshore and Polar Engineering Conference in June.

Tomasz Wierzbicki, professor of applied mechanics at MIT, says that such a simulation could help oil and gas companies identify stronger or more flexible pipe materials that could help minimize the impact of a future large-scale accident.

"We are looking at what would happen during a severe accident, and we're trying to determine what should be the material that would not fail under those conditions," Wierzbicki explains. "For that, you need technology to predict the limits of a material's behavior."

Wierzbicki already has laid much of the foundation for what he calls Fracture Predictive Technology through his work in car-crash safety testing. Over the years, he's fine-tuned a testing method that combines physical experiments with computer simulations to predict the strength and behavior of materials under severe impacts.

For example, to safety-test materials used in automobile bodies, Wierzbicki first cuts small samples from a candidate, such as steel, using a high-pressure water jet. He then sprays the sample with a fine pattern of speckles, covering the surface with tiny dots. After the spray dries, Wierzbicki clamps the cutout into a machine, which subjects specimens to different types of loading. A motion-capture camera, set up in front of the sample, takes images as it crumples, sending the images to a computer, which plots the image's dots along a grid to show exactly when and where deformations occur.

By testing different shapes and sizes of materials under various pressures, Wierzbicki can determine a material's overall mechanical properties, such as its strength and ductility. Knowing this, he says, it's possible to create a simulation to predict a material's behavior in any configuration, under any conditions. Determining the exact limits for materials especially is important for offshore drilling, he says, where pipes continually are subjected to tremendous pressures at great depths.

Wierzbicki and graduate students Kirki Kofiani and Evangelos Koutsolelos used the same principles to predict the strength and breaking points of the Deepwater Horizon's drill riser.

Since the researchers were unable to obtain a sample from the actual collapsed riser, they consulted an offshore-drilling handbook, finding that the riser was likely made from X70, a grade of steel commonly used in such risers. The material's mechanical properties closely matched those of TRIP 690, a grade of steel the team had previously tested in the lab.

The researchers drew up a computer model of the drill riser - a large-diameter pipe attached at one end to a large rectangle, representing the surface drilling platform. The team then ran a simulation that partially reconstructed the Deepwater Horizon accident: After methane gas erupted and shot to the surface, setting the entire platform on fire, the oil rig began to list and sink. The researchers simulated the sinking by slowly angling the rectangular platform downward.

As a result, the attached drill riser began to bend. A color-coded simulation showed points along the pipe where it was likely to crack: Green and blue meant the material was intact; yellow and red indicated it was at its breaking point. The group found four red areas where cracks - and oil leaks - especially were likely to occur.

The group had one point of comparison: an image, taken by an underwater robot shortly after the accident, of the ruined pipe. When the researchers compared their model with the real-life image, they found an almost perfect match.

Wierzbicki sees the results as an encouraging first step in applying the model to materials for offshore drilling.

While it's unlikely that any pipe material could have remained intact during the Deepwater Horizon disaster, Wierzbicki says that there are many improvements that can be made to shore up existing oil and gas pipelines. He and his group, whose research partly is sponsored by Royal Dutch Shell, will be analyzing samples from retired offshore pipes in the next few months.

"The deeper you go in the ocean, two or three miles down, the stronger material you need to withstand the pressure," Wierzbicki says. "But stronger materials are more brittle and break more easily. So there's a difficult problem for the offshore industry, and I think they can learn a lot from us."

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • geotechnical drilling rig

    6 Onsite Phrases Environmental Drillers Hate

    Here are six phrases that highlight common frustrations...
    Environmental Monitoring
    By: Jeff Garby
  • Wayne Nash

    Pipe Stuck? Common Causes and Solutions for Drillers

    If you have drilled for any length of time, sooner or...
    Opinions
    By: Wayne Nash
  • submersible pumps, water well pumps

    Selecting and Sizing Submersible Pump Cable

    This article helps pump installers and servicers decide...
    Pumps
    By: Bob Pelikan
You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

The Driller Newscast: New York Geo Talks 2025 Conference with Hands-on Driller Education

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast: Coiled Tubing Drilling and the Future of Geothermal

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

The Driller Newscast, Episode 147: Global Geothermal Collaboration at NY-GEO 2025

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

The Driller Newscast: 21st Century Drillers | Part 1 DEMAND

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the The Driller audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of The Driller or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • demo of a DM450 drilling rig during a customer factory visit
    Sponsored byGeoprobe

    Built for You: Smarter Drill Rigs, Stronger Support, Bigger Opportunities

Popular Stories

MainPhotoTwoBrothers.jpg

Two Brothers' Journey Through the Drilling Industry

Tariffs

Tariffs Shake Up the Drilling Industry

AI and Drought Concerns

AI’s Growing Thirst for Water and Power

The Driller Classifieds

COMPRESSORS

EAST WEST MACHINERY & DRILLING IS BUYING AND SELLING AIR COMPRESSORS, AIR BOOSTERS, AIR ENDS & PARTS
Company: East West Machinery

DRILL RIGS

LOOKING FOR LATE MODEL TOPHEADS & DRILLTECH D25'S
Company: Spikes’s Rig Sales

DRILL RIG PARTS

MEETING DRILLERS NEEDS AROUND THE WORLD
Company: East West Machinery

ELEVATORS

SEMCO INC. PIPE ELEVATORS
Company: Semco Inc.

GROUTERS

GROUTING EQUIPMENT - GROUT PUMPS & GROUT HOSE REELS
Company: Geo-Loop Inc.

PUMP HOISTS

SEMCO INC. - BASIC PUMP HOISTS
Company: Semco Inc.

WELL PACKERS

LANSAS PRODUCTS - INFLATABLE WELL PACKERS
Company: Vanderlans Lansas Products

WELL SCREENS

WELL SCREENS & SLOTTED PIPE
Company: Alloy Screen Works

Products

Water Quality Engineering: Physical / Chemical Treatment Processes

Water Quality Engineering: Physical / Chemical Treatment Processes

By carefully explaining both the underlying theory and the underlying mathematics, this text enables readers to fully grasp the fundamentals of physical and chemical treatment processes for water and wastewater.

See More Products

Subscribe to The Driller Newscast

Related Articles

  • Rock Fractures Reveal Ancient Ground Water on Mars

    See More
  • Preventing ‘Passive Receivers’ From PFAS Liability Urged  .jpeg

    Preventing ‘Passive Receivers’ From PFAS Liability Urged

    See More
  • Drill Pipe Probe

    See More
×

Dig deeper into the drilling and water supply industry!

Build your knowledge with The Driller, covering the people, equipment and technologies across drilling markets.

SIGN UP NOW
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Classifieds
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

The Driller
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
The Driller
  • NEWS
    • Water
    • Geothermal
    • Construction
    • Environmental
    • Mining
    • All Industry News
  • CLASSIFIEDS
  • EQUIPMENT
    • Rigs & Heavy Equipment
    • Consumables
    • Pumps
    • Featured Products
  • SAFETY
  • VIDEOS
    • Newscast
    • Drill Talks
    • Ask Brock
    • Emerging Drillers
  • EDUCATION
    • Drilling Business Insights
    • Reference Desk
    • Sponsored Insights
  • SOURCEBOOK
  • EVENTS
    • Conferences & Demo Days
    • Newscast LIVE
  • SUBMIT
    • Drillers @Work
  • ABOUT
    • Contact
    • Advertise
  • SIGN UP